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In this paper, we give a method to transform, if possible, a Tchebycheff basis into
a strictly totally positive basis. We introduce the concept of a "bicanonical" system.
which is used to provide a test for whether a given Tchebycheff space has a strictly
totally positive basis. We also prove that a space of functions defined on an
adequate domain has a strictly totally positive basis if it has a canonical complete
Tchebycheff basis or if the space is extended Tchebycheff. We also study the
problem of enlarging the domain of definition of the functions in a Tchebycheff
space to obtain a space with a strictly totally basis. {1995 Academic Press. Inc.

1. INTRODUCTION

TchebychefT systems (resp., complete TchebychefT systems) are closely
related to solutions of interpolation problems on the space (resp., on some
subspaces) generated by the functions and allow us to construct Lagrange
(resp., Newton) formulae for the interpolant by means of the interpolation
data. Totally positive systems (resp., strictly totally positive systems), i.e.,
systems of functions whose collocation matrices have nonnegative (resp.,
strictly positive) minors, also have important applications in computer
aided geometric design due to their variation diminishing properties
(cf. [6,5,2]).

It is well-known (cr. [10, 12, 16]) that a TchebychefT system on an open
set can be transformed into a complete TchebychefT system and that this
result also holds on sets without supremum and without infimum (see
[14, 17]). In this paper we continue this process. Our main goal is to
obtain a method to transform, if possible, a given TchebychefT system into
a strictly totally positive system. We also provide a test to determine if a
given TchebychefT space has a strictly totally positive basis.
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In Section 2 we introduce the basic definitions and notation and give
some auxiliary results. In Section 3 we introduce the concept of canonical
system, which generalizes some concepts studied previously by several
authors ([ 6, 7, II]). We show how a Tchebycheff system can always be
transformed into a canonical Tchebycheff system. We also prove that a
canonical and complete Tchebycheff system is always totally positive. This
completes the information given by Karlin in [6] and Schumaker in [11 J,
where some particular canonical complete Tchebycheff systems were
studied.

In Section 4 we obtain the announced goals. In fact, if the space has a
strictly totally positive basis, we show how to transform any canonical
Tchebycheff system into a special canonical system which we call a
bicanonical system. Theorem 4.4 shows how to modify bicanonical bases of
Tchebycheff spaces in order to obtain a (bicanonical) strictly totally
positive system. In [3], the bicanonical totally positive bases are called
B-bases. In fact, in that paper it was shown how to obtain a B-basis of a
space from a given totally positive basis. Furthermore, if (bo, ... , bn ) is any
B-basis, then any other basis (vo, ... , Vn) = (b o, ... , bn) K is totally positive if
and only if the matrix of change of basis K is totally positive. Here we give
new examples of bicanonical bases such as generalized monomial bases and
generalized Bernstein bases in the space of Muntz polynomials.

In Section 5, we provide some examples of common Tchebycheff spaces
which possess strictly totally positive bases. This is the case of extended
Tchebycheff spaces and spaces of functions whose domain of definition can
be extended to obtain a Tchebycheff space [13, 15]. We also deal with the
problem of extending the domain of definition of spaces which have a
strictly totally basis to spaces having the same property.

2. DEFINITIONS AND AUXILIARY RESULTS

A sequence of functions (uo, ... , Un) defined on a totally ordered set Swill
be called a system of functions. Many characteristics of the vector space
generated by a system of functions (in particular when dealing with inter­
polation problems and sign or zero properties of fucntions) can be derived
from the properties of the corresponding collocation matrices

(
Uo, U 1 , ... , Un)

M '= U t· .
t t t

. (]( I )),~O. .. ,m;]=O, ...• n'
0' J' ... , nl

to < t 1 < ... < tm in S.

(2.1 )

For this reason, we introduce some terminology about matrices.
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(2.2)

DEFINITION 2.1. A matrix A is called totally positive (TP) if all minors
of A are nonnegative. A is called strictly totally positive if all minors of A
are strictly positive. If a matrix A has all its minors involving the initial
consecutive columns positive, then A is called lowerly strictly totally
positive (LSTP) (see [4]).

Following the terminology of [12] we introduce the following
definitions:

DEFINITION 2.2. A sequence of functions (uo, ... , u lI ) defined on a totally
ordered set S is called a weak Tchebycheff system (WT system) if

det M (uo, ,U II
) :? 0,

to, , til

If the inequality (2.2) is strict then (u o , ... , u
lI

) is called a Tchebychejf system
(T system). A system (u o, ... , u lI ) is called a complete Tchebycheff system
(CT system) if (u o, ... , Uk) is a T system for each k = 0, I, ... , n. Some
authors (cf. [17]) use the terminology of Markov system instead of CT
system. Let us remark that (uo, ... , u

lI
) is a CT system if and only if all the

collocation matrices (2.1) are LSTP. If (u io ' ... , U ik ) is a T system for all
o~ io < ... < ik ~ n, 0 ~ k ~ n, then (u o, ..., u,J is called an order complete
Tchebycheff system. It can be easily seen that this property is equivalent to
saying that all the collocation matrices (2.1) are strictly totally positive and
so we shall say that (uo, ... , u lI ) is a strictly totally positive system (STP
system). In [6] an STP system is also called a Descartes system. If
(u i", ••• , U ik ) is a WT system for all °~ io < ... < ik ~ n, 0 ~ k ~ n, then
(u o, ... , u lI ) is called an order complete weak Tchebychejf system. It can be
shown analogously that all the collocation matrices (2.1) of any order com­
plete weak TchebychefT system are totally positive and so we shall say that
(u o, ... , u,J is a totally positive system (TP system).

A finite dimensional vector space!JI is called a T space (resp., WT space,
CT space, TP space, STP space) ifi'l has a basis which is a T system (resp.,
WT system, CT system, TP system, STP system). The next result gives a
first relationship between these concepts.

PROPOSITION 2.3. )/1 is an STP space if and only if it is a T space and
a TP space.

Proof Clearly every STP space is a T space and a TP space. Conver­
sely, let (uo, ... , u

lI
) be any TP basis of a given T space. Let K be any STP

matrix of order n + 1 and let us define (1'0' ... , vlI ):= (uo, ... , ulI ) K. Taking
into account that for any to < '" < til in S
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we deduce from Theorem 3.1 of [1] that M(';~:: ~;,) is STP because this
matrix is the product of a nonsingular TP matrix and an STP matrix.
Therefore (uo, ... , Un) is STP. I

We have already mentioned that these spaces have remarkable sign
properties as we shall state now.

Given any vector A= (A o, ... , Am) E IR m + 1 let us define

S' (A ):= max {k I there exist 0 ~ io < ... < ik ~ m, such that

(-1 V Ai,> 0 for alljE {O, , k} or

(-I)iA iJ <O for alljE {O, , k}},

S+ (}.) := max{ k I there exist 0 ~ io < ... < ik ~ m, such that

(-I)j Ai,~ 0 for alljE {O, , k} or

(-I)j Ai,~O for alljE {O, , k}}.

Analogously for any function u: S -+ IR we define

S-(u) := sup{ k I there exist to < < t k in S,

such that S-(u(to), , U(tk)) =k},

S + (u) := sup {k I there exist to < < tk in S,

such that S+(u(to), , U(tk)) =k},

Z(u):= #{tESI u(t)=O}.

T spaces (resp., WT spaces) can be characterized in terms of sign proper­
ties as shown in Lemma 3.1 of [ 17]. Let us restate this result using our
terminology.

LEMMA 2.4. Let ill be an (n + 1)-dimensional vector space of fimctions.
Then the following properties are equivalent:

(i ))11 is a T space,

(ii) Z(u)~n, 'iui'O, and S~(u)~n, 'iuEJlf,

(iii) S+(u) ~ n, \iu i' O.

Lemma 4.1 of [17] also gives the following characterization of WT
spaces:

LEMMA 2.5. LetW be an (n + 1)-dimensional vector space of fimctions.
Then ill is a WT space if and only if S - (u) ~ n, \iu E U.
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It is well-known that any T system can be seen as a system of functions
defined on a subset of IR as shown in Theorem 3.3 of [17].

Let fiJ be the set of all subsets of IR which contain neither their infimum
nor their supremum. Analogously to [14], we shall deal only with systems
of functions defined on sets DE fiJ. For these kinds of domains, it was
shown in Theorem 3 of [14] that the concepts of T space and CT space
coincide. Here we prove that any totally positive T system is an STP
system provided that the domain of definition is some DE fiJ.

PROPOSITION 2.6. Let (u o, ..., u,,) be a T system of functions defined on
DE qJ,. Then the following conditions are equivalent:

(i) (uo, , u,,) is TP,

(ii) (U;, , Uj+k) is a T system for all iE {O, ... , n} and all kE
{O, ... , n - i},

(iii) (u o, ... , U,,) is STP.

Proof (i) = (ii) Let us see that if (u o, ... , U,,) is TP then any collocation
matrix

B= M (U j , ... , U;+k),
so, ..·,.'h

of (u j , ••• , u;+d has positive determinant. Let us denote by tj+j:=Sj'
)=O, ...,k. Since DE:?/) we can take to <t 1 < ... <t;_I<SO and Sk<
t j +k + 1 < ... < t" in D. Then B can be seen as a principal submatrix of the
nonsingular TP matrix M( ~~:: ~;"). By Corollary 3.8 of [1], det B> O.

(ii)=(iii) Let A:=M(~:;::~:), to<· .. <t", be any collocation
matrix of (uo, ... , U,,). By (ii) the minors of A with consecutive columns are
strictly positive. By Fekete's lemma (cf. Theorem 2.5 of [ I ]), A is STP and
(iii) follows.

(iii) = (i) Obvious. I

3. TRANSFORMING TCHEBYCHEFF SYSTEMS INTO CANONICAL SYSTEMS

The process of transforming a T system into an STP system can be
subdivided into several stages. In this section we shall discuss the first stage
of this procedure which leads to some special systems. We shall refer to
these systems as canonical systems. Canonical systems generalize some
systems studied previously by several authors.
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DEFINITION 3.1. A canonical system (uo, ... , un) of functions defined on a
set DE '.?lJ is a system of functions which satisfies

where a = inf D.

I· Uj(t) 0
Im---=
'~aUj_t(t) ,

i= I, ..., n, (3.1 )

Remark 3.2. Let us observe that from Lemma 2.4 any function U in a
T space dII has a bounded number of sign changes. Thus U has constant
sign on a neighbourhood of a. On the other hand, if u, WE dII and w"# 0
then lim, ~ a u(t)/w(t) E ~ U { - 00, + oo}. In fact, given any a: E IR, u/»'­
a: = (u - a:w)/w has constant sign on a neighbourhood of a. Therefore one
of the three following possibilities occurs on a neighbourhood of a:
u(t)/w(t) > a:, u(t)/w(t) = IX, or u(t)/w(t) <a:. Then, if

A = {a: E ~ I there exists a neighbourhood V of a
such that u/w ~ IX on V},

it can be easily shown that lim h a u(t)/w( t) = inf A, with the convention
inf 0 = + 00.

The following result will be very useful.

LEMMA 3.3. Let (uo, ..., un) be a T system of functions defined on
DE'.?lJ and a: = inf D. Let us assume that Uo> 0 on a neighbourhood of a
and

I· Uj(t) 0
Im--=
t~a uo(t) ,

Then (u l , ... , un) is a T system.

for i = 1, ..., n.

Proof We first prove that (u j , ..• , u,,) is a WT system. Let t l < .,. < tn
in D. For any t < t 1

ul(t) un(t)

uo(t) uo(t)

I d (uo,Ut, ... ,Un) d-- etM = et
uo(t) t, t l , ... , t"
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Taking limits as t -+ a, we obtain

0::;; det

o ···0

M (11 1, , 11,,)
t I' , t 11

d (
111, ... ,11,,)

= et M .
t, , ... , t"

So, (u 1, ... , u,,) is a WT system. By Lemma 2.4 it remains to prove that
Z(II)::;;11-1, for all 11#0, in span(II" ...,II,,). Let us assume that Z(U)~11

for some 11 E span( Ul' , U,,), 11 # 0, and we shall obtain a contradiction.
Since uEspan(llo, u" , u,,) and (uo, u" ... , ulI ) is a T system, by Lemma
2.4, we have Z(u) = n. Let T1 < ... < T" be the zeros of u. Let T,,+, ED be
such that T" + , > Til' Without loss of generality we may assume that 11 > 0
on a neighbourhood of a. Let v E span( Uo, 11" ... , 11,,) be the solution of the
interpolation problem !'( T r) = ( - I r, i = I, ... , 11 + I. So S (v) ~ n and since
(u" ... , u,,) is a WT system, Lemma 2.5 implies that v¢span(u" ... , u,,). On
the other hand (110, ... , 11,,) is a T system and by Lemma 2.4 (iii), S + (l') ::;; n,
which implies that v( t) < 0 for all tED, t < T J. Therefore (X := lim r ." v( t)/
lIo(t)::;;O and (X#O because v¢span(u" ...,III/).

By our assumption, 11 > 0 on a neighbourhood of a. Let To E D, To < T,

such that U(To»O. Let 0<£< -U(To)/V(To) and w=u+w. Since
lim r ."W(t)/lIo(t)=I::X<O, there exists T ,ED, T I <To such that
W( T ,) < O. By the choice of f, 11'( To) > O. Thus

S (w)~S (W(T ,),w(To),w(T,), ... ,w(TI/))=n+l,

which contradicts Lemma 2.4 (ii). I

Let us remark that, omitting the assumption I/o> 0 on a neighbourhood
of a in the previous lemma, we can obtain the statement (u" ... , u,,) or
(-1/" ... , 1/11) is a T system.

Let us observe that canonical systems satisfy some properties "at the left
of D." It will be useful to consider analogous properties to the right,
that is,

I
· II; -dt)
1m =0

t ~h lI;(t) ,
i = I, ..., n, (3.2)

where h := sup D. This can be equivalently stated as saying that the system
(I/o, ... , u,,)# given by

is canonical.

(1I()o ... , II,,) # (.1'):= (II,,, ... , 11 0 )( -.1'), .I'E -D, (3.3 )
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From the previous definition, it follows that (uo, ..., ulI ) is a T system if
and only if (uo, ..., u lI ) # is a T system. Since a CT system (uo, ..., unl is a
system of functions whose collocation matrices have all its minors with
initial columns strictly positive, we obtain that (uo, ..., u lI ) # is CT if and
only if any collocation matrix of (uo, ..., u lI ) has all its minors with final
columns strictly positive. This will be used in the proof of the following
proposition.

PROPOSITION 3.4. If (u o, ..., ulI ) is a canonical T system and ti; > °on a
neighbourhood of a = inf D, i = 0, ... , n - I, then (uo, ... , till) # is a CT system.

Proof We prove this result by induction on n. If n = 0, it is trivial.
Let us assume that the result holds for n - 1, and let us prove it for n.
The system (til' ... , till) is clearly canonical and, by Lemma 3.3, it is also a
T system. By the induction hypothesis (u" ... , till) # is CT and since
(u o, ... , till) # is a T system, (uo, ..., ulI )# is a CT system. I

The following result gives a sufficient condition for a system to be STP.

PROPOSITION 3.5. If(uo, ... , ulI ) is a canonical CT system, then (uo, ..., u lI )

is STP.

Proof Let us first prove by induction on i that (u i , U i +', , Uk) is a T
system for all k ~ i. Since (uo, ... , u lI ) is a CT system, (uo, , ud is a T
system for all k ~°and the result follows for i = 0. We now assume that
(Ui_I' ... , Uk) is a T system for all k~i-I.In particular, tii_1 is a T system
and therefore a positive function. For a given k ~ i-I, since (u i _ " ... , Uk)
is TchebychefT, canonical, and U i _ 1 > 0, by Lemma 3.3 (u i , ... , Uk) is a T
system.

Thus we have shown that (U;, ... , Uk) is a T system for any i = 0, ... , n,
k = i, ... , n. The proposition follows from Proposition 2.6. I

Our definition of canonical CT system generalizes the concept which
other authors have called "canonical complete TchebychefT system" (CCT).
In [11], a canonical CT system is a system of functions (tio, ... , till) defined
on an interval [a, b] such that

UI(t) = uo(l)rdal(sl) ds"
a

UII(t)=UO(t) r···f'-I dall(slI) .. ·da,(sIl,
a lJ

where tio is a bounded positive function and a" ... , all are bounded, right
continuous, monotone increasing functions on [a, h].
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i = 0, ... , n - 1.

It is easy to check that, under these conditions, (u o, ... , un) is canonical
and CT on (a, b) in the sense defined in this paper. By the previous
proposition such a system is STP on (a, b). Furthermore, taking into
account Lemma 2.1 of [11], we may deduce that any CCT system
(u o, ... , Un) in the sense of Schumaker is STP on (a, b] and, since uo(a) > 0,
u1(a)= .. · =un(a)=O, we may deduce that (uo, ... ,u,,) is TP on [a,b].

We finish this section showing that any T system can be transformed
into a canonical T system.

THEOREM 3.6. Any Tchebycheff space O/l of functions defined on DE!:i!
has a canonical Tchebycheff basis (vo, ... , vn) with Vi> 0 on a neighbourhood
of a =inf D.

Proof Let (uo, ..., u,,) be a basis of °Il which is a T system. From
Remark 3.2 it is clear that we may choose i E {O, ... , n} such that lim, ~ a Iu)u i I

-=I- 00, j = 0, ... , n. If I: is the sign of Uj on a neighbourhood of a, then
(I:Uj,U1, ... ,-I:Uo, uj+I, ... ,un) is a T system. Let Wo=I:U j, wj=uj ­
limt~a(uj(t)lui(t))ui' jE{1, ... ,n}\{i} and J.Vj=-I:(uo-limr~a(uo(t)/

ui(t)) u i ). Then (w o, ..., wn) is a T system such that wo>O on a
neighbourhood ofa and lim,~a~'j(t)/wo(t)=O,i=I, ... ,n. By Lemma 3.3
(WI, ... , w n ) is also a T system and, applying iteratively to this system the
previous construction, the result follows. I

Remark 3.7. The previous theorem together with Proposition 3.4
provides an alternative proof of the following well-known fact: A T space
of functions defined on an open set has a CT basis (cf. [14]).

4. TRANSFORMING CANONICAL TCHEBYCHEFF SYSTEMS
INTO BICANONICAL SYSTEMS

In the previous section we transformed a T system into a canonical T
system. This is the first step in transforming "if possible" a T system into
an STP system. We now transform a canonical system into another canoni­
cal system which enjoys further properties.

PROPOSITION 4.1. Let (u o, ... , u,,) be a canonical Tchebycheff basis of a
.\pace ()/I of functions defined on DE!:i! and b = sup D. Then there exists
a lower triangular matrix L with unit diagonal and a permutation (J of
{O, I, ... , n} such that (v o, ... , v,,) = (u o, ..., u,,) L is a canonical TchebychefJ
basis of}/I satiJfying

I· Va(i)(t) 0
1m =
'~hVa(i+l)(t) ,

That is, (voIOi' ... , Vain») # is canonical.
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Proof From Remark 3.2 the set

is nonempty. Let k o be the maximum of that set. Let

{

w}:= u}, Vj?: k o,

I
. u}(t)

W·:=U·- Im--,uk,
J J t~b Uko(t) 0

283

It is simple to check that (wo, ... , wn ) is also a canonical Tchebycheff basis
ofJU and

Let k 1 be the maximum of

and let us define

{

=.}:=W}, if j=ko or j?:k l ,

~ ._, I' w)t) .
-} •- 11'} - 1m . 11' k, ' otherwise.

'~b Wk'(t)

Again (zo, ... , zn) is a canonical Tchebycheff basis of 0/1 and

and

Continuing iteratively this procedure we obtain indices k o, k 1, ... , k n and
a canonical Tchebycheff basis (vo, ..., v,,) such that

Since the functions Vi are obtained by subtracting from U i linear combina­
tions of the functions u} for j > i, it follows that the matrix of change of basis
L is lower triangular with unit diagonal. Defining a as the permutation
given by a( i ) = k" _ i' i = 0, ..., n, the result follows. I
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Remark 4.2. If the canonical system (vo, ... , v,,) obtained in the pre­
vious proposition has associated the permutation (J = I (identity), then
(1'0' ... , 1',,) # is also canonical.

This motivates the following defintion:

DEFINITION 4.3. A system of functions (uo, ... , u,,) is said to be hicanoni­
cal if both (uo, ... , u,,) and (110' ... , u,,) # are canonical.

It is well-known that the space nil of polynomials of degree less than or
equal to n is a Tchebycheff space on any interval I of IR. In [2], it is shown
that, for 1= (0, oc), the monomial basis ( I, t, ... , til) is bicanonical and that,
for 1= [0, I], the Bernstein basis is bicanonical. An interesting generaliza­
tion of the polynomials on (0, 'oc') is given by the Muntz polynomials in
(O,oc,), which is the space generated by the basis (tA')'E ulOI' where
(;., LEU {OJ is a strictly increasing sequence of real numbers. Let us
consider the space of Muntz polynomials .11 generated by the basis
(t i

", t A
' , ... , t A

,,). Since the kernel K( A, t) : = t A = exp(}, log( t)) is STP in
IR x (O,oc.) (cf. [6, p. 100]), .II is an STP space and, in particular, a T
space. In addition, it is easy to check that this basis is bicanonical. The next
result shows that the concept of a bicanonical basis of a T space leads to
another sufficient condition for a system to be STP.

THEOREM 4.4. Let (110' ... , uJ he a hicanonical hasis of a Tcheh.vchefl
.Ipace o!'limctions defined on D ES/i. Then:

(i) u, has constant strict sign.fin· each iE {O, ... , n}.

(ii) [lu o, ... , ull>O then (u o, ... , u,,) is STP.

Proo( Let a = inf D and h = sup D. First, let us prove (i), assuming that
(uo, ... , ull ) is a T system. Given iE {O, ... ,n}, let us see that either u,>O or
- u, > 0. Let Ej E { I, ~ I} be the sign of uj on a neighbourhood of a. By
Lemma 3.3 we deduce that (EoU" u 2' ... , u ll ) is a T system. Iterating this
procedure we obtain that (l;o"'Ek IU" Uk+I' ... , ull ) is a T system, k= I,
2, ... , i. Now, reasoning analogously on the T system (Eo'" E, IU" U, +" ...,
U

Il
) # and taking I;; E { I, - I} as the sign of U i on a neighbourhood of h, we

deduce that (Eo" '/:, IU" U,+" ... , Uk I' E~ + I" '1;;,U k ) #, k = n, n- I, ... , i, is
a T system. Finally Eo' .. E, IE; + I ... E:,U, > °and thus Ui has constant strict
sign on D. The general case follows from the fact that if (uo, ... , u ll ) is a
basis of a T space, then either (uo, U I , ... , u ll ) or (-uo, U I , ... , u ll ) is a T
system.

In order to prove (ii), let E E { ~ I, I} be such that ({;I/o, U I , ... , u ll ) is
a T system. From Proposition 3.4 and Proposition 3.5, we deduce that
(mo , u" ..., ull ) # is STP. Thus I; = I and (uo, ... , u,,) is STP. I
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Let us apply the previous theorem to show that the generalization of the
Bernstein basis P=(Po, ... , Pn) given by

Pi(t):= (-1 )"~; Ai+I'" }."f"[Ai, ... , A,.],

p,,(t):= t A",

i= 0, ..., n -1,

0= Ao< ... < A", is strictly totally posItive on (0, 1). Here tA[Ai, , An]
denotes the divided difference of the function A -+ t Aat the points Ai' , },,,.
If we take }'i = i, i = 0, ... , n, we obtain p;(t) = (7)( 1 - 1),,-i ti. The basis P of
Muntz polynomials was described by Hirschman and Widder to construct
a generalized Bernstein operator

n

Bn(f; t) := L f(rx;) Pitt),
;=0

i= 1, ... , n,

OC i := [(l-~)'" (l-~)] lin,
A' +1 An

whose approximation properties have been further investigated by Leviatan
(see [8, 9]). Clearly M = (tAO, ... , tAn), t E (0, 1), is an STP basis of the space
.OJ generated by the functions (Po( 1), ..., p,,(t)), t E (0, I). So :Ji' is an STP
space and, in particular, a T space.

Let us show that P is a bicanonical basis of positive functions. First we
observe that Pi is a linear combination of t\ ..., tAn with nonzero coefficient
in t\ for all i. This implies that limt~oPi+l(t)/Pi(t)=O, i=O, ..., n-l, and
so P is canonical. On the other hand, the functions Pi are differentiable at
t = 1 and

which implies that p~k)( I) = 0 if k < n - i and (-1)" -i p~n- il( 1) > O. So Pi
has at t= 1 a zero of multiplicity n-i and thus limt~IPi(t)/Pi+I(t)=O,

i = 0, ..., n - 1. That is, P is bicanonical. Furthermore, from the sign of the
derivatives we deduce that Pi is positive on an interval (1 - 0, I). Applying
Theorem 4.4 we deduce that the functions Pi are positive on (0, 1) and that
P is an STP basis. The above arguments can be applied even if Ao of- O. For
this case we choose p;(t):=(-I)n~i(}'i+I-Ao)···O'n-A.O)tA[}'i,...,A.n],
which form a basis, normalized so that L,7=OPi(t) = tAO, and obtain
analogously that it is a bicanonical STP basis of the space.

The following lemma allows us to transform an STP system into another
STP system.

LEMMA 4.5. Let (uo, ... , un) be an STP system of functions defined on
DEEZ and a=inf D. Then the system (v o, ..., vn) given by
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i= 1, ... , n,

is also an STP system.

Proof Let us show first that lim, ~ a u;(t)/uo(t) is finite. From

we derive u;(s)/uo(s) > u,(t)/uo(t), which implies that u;/uo is strictly
increasing. Since u;/uo > 0on D, we deduce that lim,_ a u;(t)/uo(t) exists
and it is a nonnegative number.

It is clear that (vo, ... , v
ll

) is also Tchebycheff on D. Let us see now that
it is TP on D. It remains to see that any collocation matrix M( '/::: ~,~),

(I < ... < (,pis TP. For any t < (1 the matrix

(

1 _u1(t) ... _ldt ))
uo(t) uo(t)

M (uo, ,U ll )

t I , , t n

is TP because it is the matrix obtained by dividing the first row of the TP
matrix M( t~;.:~;') by the positive number uo(t). Taking limits when t -'> a

we may deduce that the matrix

1. Ul(t). I' Ull(t))1m -- ... Im--
'~a Uo(t) '~a UO(t)

M (uo, ,U ll )

t I' , t"

is TP. Performing a step of Gaussian elimination by columns to produce
zeros in the first row of A, it follows from Corollary 3.4 of [I] that the
resulting matrix

(
10",0)

M (Vo, , Vll )
t I ' , til

is TP and thus M( '(~:: ;;") is also TP. Therefore (vo, ... , v,,) is TP on D and
by Proposition 2.6 it is also STP on D. I
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The following proposition shows that in an STP space any canonical
basis allows us to construct STP subspaces of any dimension.

PROPOSITION 4.6. Let 0/1 be an STP space offunctions defined on D E ~.

For any canonical basis (bo, ... , bn) of 0/1, the subspaces spanned by bb
bk + I' ... , b", k = 0, ... , n, are STP spaces.

Proof Let (u o, ..., u,,) be any STP basis of 0/1. From Lemma 4.5 we may
construct an STP system (VO'''''vn) such that vo=uo and limHav;(t)!
uo(t) = 0, i = 1, ..., n. Therefore the n-dimensional subspace 0/11 generated by
(v I , ... , Vn) is an STP space. Furthermore one has

{
1

. u( t) }
0/11 = U E 0/1 hm --=°.

'~a uo(t)

Let us prove that b l , ... , bn EO/II and that they form a basis of the STP
space JUl'

Since (b o, ... , b,,) is canonical, lim, ~a b i ( t)!bo(t) = 0, i = 1, ..., n. Now if we
express bo as a linear combination of the basis (vo, ..., v,,) we may write

and deduce that this limit is finite. Therefore

i= I, ... , n.

It therefore follows that Ao #0 and UZI1 = span(b j , ... , bn)' Thus (b l , ... , bn) is
again a canonical basis of the STP space UZI]. Applying iteratively the
previous arguments, the result follows. I

The next theorem shows that, in an STP space, the construction of
Proposition 4.1 is possible only when the permutation a = 1.

THEOREM 4.7. Let 0/1 be an STP space offunctions defined on D E~. If
(b o, ... , b,,) is a canonical basis of 0/1 such that

i= 0, ... , n -1, (4.1 )

for some permutation a of {O, I, ... , n}, then a = 1 (identity). Therefore
(b o, ... , b ll ) is bicanonical.

Proof Let us assume that a(n) # n and consider the space "'H C generated
by ba(,,), baCIl)+I' ... , b,,, which is an STP space by Proposition 4.6. Let us
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observe that lim h " b;(t)/b"ln)(t) =0 for each iE{a(n)+I, a(n)+2, ... ,n}
since (bo, ...,b,/) is canonical. By (4.1) we also have that lim'~hb;(t)/

b"ln)(t) = 0 for all i # a(I1). Any function H' Eft' can be written in the form
II' = L;'~",n) (Y..;b; and satisfies

(4.2)

Let (H'"ln» ... , lVn ) be an STP basis of 'It'. By Lemma 4.5 we may assume
without loss of generality that

I
· w;(t) 0
lm--~= ,

I ." II'"In I( t)

From (4.3) and (4.2) we derive

i = a(n) + I, ..., n. (4.3 )

i=a(I1)+1, ... ,Il,

and taking into account that (w"ln» ... , w n) is a basis of 11' we deduce that

(4.4)

Now, using (4.4), (4.3), and (4.2), we deduce that

s--h
= lim

If tED, for any s> t, sED, let us consider the 2 x 2 collocation matrix
M( 10",,,,/:;,,,,,,). Then taking limits we obtain

lim 1 det M (11'''lnl' w"ln)+ I)
.,-1> H'",n)(t) H'"ln)(s) t, S

w,,(n)+ I(t)

w,,(n)(t)

H',,(n)+ ,(s)

H',,(n)(s)

This means that there must exist collocation matrices with negative deter­
minants. This contradicts the fact that (1I'"lnl' ... , H'n) is an STP system.
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Thus we have shown that a(n) = n. Now, applying Proposition 4.6 to the
canonical basis (ba(o), ... , ba(n)), we see that the space span(ba(o), ... ,
baln_I))=span(bo, ... ,bn_d has an STP basis. Iterating the previous
procedure we obtain that a(n - I) = n - I, ..., a(O) = O. I

As an application of Theorem 4.7, let us prove that the space TIn of poly­
nomials of degree less than or equal to n, n ~ I, on IR is not an STP space.
In fact, the basis un, ..., t, I) is a canonical basis for which (4.1) holds for
the permutation a( i) = n - i, i = 0, ... , n. From Theorem 4.7 we derive that
TIn cannot be an STP space on IR.

COROLLARY 4.8. Let 0/1 be a T space offunctions defined on D E~. Then
the following properties are equivalent:

(i) JII has an STP basis.

(ii) JII has a bicanonical basis.

(iii) illi has a bicanonical STP basis.

(iv) ,JII has a canonical CT basis.

Proof (i) => (ii). This is a consequence of Theorem 3.6, Proposition
4.1, and Theorem 4.7.

(ii) => (iii). Let (b o, ... , bn ) be a bicanonical basis. By Theorem 4.4(i)
bi has constant sign on D for each i. Let ci=sign(b;). Then (coho, ... ,cnbn)
is STP by Theorem 4.4(ii).

(iii) => (iv). Obvious.

(iv) => (i). By Proposition 3.5 each canonical CT system is STP. I
Remark 4.9. Now we may give a construction of STP bases from T

systems. In fact, in the proof of Theorem 3.6 it was indicated how to trans­
form any given Tchebycheff basis into a canonical Tchebycheff basis. From
Theorem 4.7 we may deduce that, if there exists an STP basis in the space,
it can be obtained as suggested in the proof of Proposition 4.1 taking
k 0 = n, k 1 = n - I, ... , k n = O. Furthermore, if this procedure fails (that is, k;
cannot be taken as n - i because some limits of quotients when t -> bare
infinite) then the space has no STP basis by Theorem 4.7. Summarizing, we
have also obtained a test to determine if a space has an STP basis and a
method of constructing one if it exists.

5. TCHEBYCHEFF SPACES WITH STRICTLY TOTALLY POSITIVE BASES
AND EXTENSIBILITY

In this section we give some important examples of STP spaces. The next
result will show that many usual Tchebycheff spaces have totally positive

640i8U2·ll
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bases because, in some Tchebycheff spaces, bicanonical bases can be
directly obtained using further properties related to differentiability. First,
let us recall the concept of an extended Tchebycheff system (ET system): a
system of functions (uo, ... , u//) in C//[a, b] is called an ET system if any
extended collocation matrix

to:;:;' t I :;:;, ... :;:;, t // in [a, b],

has positive determinant, where L;[u] :=u1m,)(t;), m;= #{k<il tk=t,}.
An ET space is a vector space with an ET basis. From the definition it
follows that the Hermite interpolation problem on an ET space always has
a (unique) solution.

THEOREM 5.1. If 'W is an ET .Ipace of functions defined on [a, b], then
W is an STP space.

Proof Let n = dim !JI - I. For each i E {O, I, ... , n}, let us define u I E 'II
as the unique solution of the Hermite interpolation problem

~/jl(a)=O,

ulil(a) = I,

j= 0, ... , i-I,

j = 0, ..., n - I-i.

(5.l.a)

(5.1.b)

(5.l.c)

It is easy to show that conditions (5.1) imply that U; has a zero of multi­
plicity i at a and a zero of multiplicity n - i at b, for each i = 0, I, ... , nand
so (uo, ... , u//) is bicanonical. Conditions (5.1) also guarantee that the
functions uo, ... , u// are linearly independent, and so (uo, ... , u//) is a basis of
the T spaceJII.

Let us observe that conditions (5.1.a) and (5.l.b) imply that the func­
tions U; are positive on an interval (a, a + 15) for some 15 > O. From Theorem
4.4.( i), it follows that they are positive on (a, b). By Theorem 4.4(ii),
(1Io,''''U//) is STP on (a,b). Let A=M(';:::::~'), to <'" <t//E[a,b]. If
to> a and tIl < b, then A is STP. Otherwise A is TP as follows from the fact
that, if to = a, the first row is (1, 0, ... , 0) and that, if t // = b, the last row is
(0, ... ,0, u//(b)). Thus (uo, ... , U1/) is TP on [a, b] and, by Proposition 2.3,
ill is an STP space. I

The previous theorem is closely related to Corollary 1.1 of Chapter 6 of
[6] which states that in any extended complete Tchebycheff space there
exists an (extended) totally positive basis. The proof of this result was
based on two facts: an extended complete Tchebycheff space has a canoni­
cal extended complete Tchebycheff basis (Remark 1.1 of Chapter 6 of [6])
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and any canonical extended complete TchebychefT system is an extended
totally positive system (Theorem 1.1 and Theorem 1.2 of Chapter 6 of [ 6 ]).
Both consequences of Karlin's results can be compared with Theorem 3.6
and Proposition 3.5 of this paper, which have been obtained in a more
general framework.

An important source of examples of spaces with STP bases are T spaces
whose domain of definition can be extended. In this sense, we point out
two recent papers [13, 15]. In those papers it was shown that, under
suitable hypotheses, STP spaces are characterized by the property of
extending them to TchebychefT spaces on a larger domain of definition
(Theorem 2.2 of [13 J, Theorem 1 of [15]). The domains of definition S
used in these results satisfy the property (B) of Zielke [17], that is, for any
two points Sl <S2 in S there exists SES such that Sl <S<S2' The next
theorem is closely related with those results, but it can be applied to any
DE qz without imposing the property (B) of Zielke. We include some
proofs which illustrate some techniques used throughout this paper. We
also study the question of constructing STP extensions of an STP space.

DEFINITION 5.2. Let·fiJ be a vector space of functions defined on a
totally ordered set S. If S ~ S with the induced order relation and 11 is the
space formed by the restrictions of dii to S we say that dii is an extension
of the space JII to S, provided that dimfiJ = dim 11.

THEOREM 5.3. Let 0/1 be a T space of functions defined on a set DE f:»
such that a = inf D > - 00. Then the following properties are equivalent:

(i) There exists an extension ,Iii to a set {To, ... , Tn} U D (TO < ... <
Til < a) which is a T space.

(ii) 11 is an STP space.

(iii) There exists an extension ·fiJ to the set (2a - D) u {a} u D
(2a - D := {2a - tit ED} ) which is a CT space.

(iv) There exists an extension .iii to a set D' u D (D' an infinite set
such that sup D' ~ inf D), 'which is an STP space.

Proof (i) => (ii). Since ,Iii is a T space, there exist basic functions for
the Lagrange interpolation problem

Vi,jE{O,l, ... ,n}.

Let us define W;:= (- 1r 111 _;, i = 0, ..., n. Let us see that (wo, ... , wn ) is STP
on D. We deduce that (wo, ... , }V n ) is a T system because it is a basis ofdii
and

(
wo, ... , W ll ) .

det M = det( ( - l)l b;. n-) L.}=o, '. n = 1 > 0,
To, ... , Tn
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where Jk,I equals I if k = I and equals °otherwise. It remains to see that
any minor det M (H;:::: ;~'k) with k < 11 is positive, which follows from the
straightforward fact

where)" ... ,)" k are the indices such that,

Uo, ..., id u {n - ), ' ... , n -)" d = {O, I, ... , n} .

Therefore the restrictions of Wi' i = 0, ..., n, to D form an STP basis of'lI.

(ii) = (iii). By Corollary 4.8( iii), there exists a bicanonical STP basis
(1.'0' ... , v,,) ofJlf. Let us define

if IE 2a - D,

if I = a,

if IE D.

(5.2)

Now we may show that (uo, ... , u,,) is a CT system, that is (uo, ... , i\) is a
T system for each k = 0, ... , n. Taking into account that the restriction of
({)o, ... , i\) to D is a T system, it is sufficient to see that the space of func­
tions generated by (uo, ... , iid is a T space. By Lemma 2.4 this condition is
equivalent to saying that S+(u)~k for each v:=I,~~oA;vi' If Ao#O it is
clear that () has the same sign to the right and to the left of a because this
property holds for t)o and lim,." ii/(t )/uo( I) = 0, i = 1, ... , 11 (see formula
(3.1 )). Therefore

S+(ii) = S+(iiI 211 v) + S+(ul D)

= S+ (to (_I)i A/Vi) + S+ (t A/Vi).

Since (1.'0' ... , vk ) is STP on D,

S+ (to )'iVi) ~ S(Ao,)." ...,Ad,

S+ (to (-I V ).;1.';) ~ S (Ao,-A" ... , (_I)k Ad·

Therefore

If )'0 = °and A, # 0, u = I,7~ I ;.Ji; then u(a) = °and the strict signs of u
in a left neighbourhood and a right neighbourhood of a are different
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because this property holds for VI and Iim,_av;(t)/VI(t)=O, i=2, ... ,n
(again by formula (3.1)). Then, reasoning as above we obtain

S+(v):s; S+(vI 2a - D ) + S+(vI D ) + I

:s; S-(}'I, ..., }.d + S-( -AI> ..., (_I)k Ak) + 1

:s;k-l+l=k

because (VI' ... , vk ) is STP on D. Finally, if Ao = 0 and }'I = 0, V= I.1~ 2 }'iV;
and

Since (v 2 , ..• , v,,) is STP on D,

S+(v):s; S-(A2, .,', },d + S-U2, .. " (_l)k },d + 2

:S;k-2+2=k

and (iii) follows.

(iii) => (iv). Let"/"' be any complete TchebychefT extension of 0If on
2a-Du {a} uD and let '0< ... <,,,E2a-D. Since (i) implies (ii), we
know that the space generated by the restriction of the functions of 1~ to
D'uD, where D':=[(,,,,oc)n(2a-D)]u{a}, is an STP space. Let us
observe that the set D' is infinite because sup(2a - D) ¢ 2a - D.

(iv) => (i). Obvious. I

Let us observe that if we apply the construction of the extension in
(ii) => (i) in the previous theorem to the monomial basis (I, (, ..., (") on
(0, oc), which is STP, we obtain the monomials defined on the whole
real line, which is a CT system. This example motivated the mentioned
construction,

Now, we show an example of a TchebychefT space defined on an open
and bounded interval which does not have any STP basis. This means that
this space has no extensions in the sense stated in Theorem 5.3.

EXAMPLE 5.4. Let {!1t = span {1, cp(t)}, where cp: (E ( - I, 1)f-+(/(1 - (2) E IR.
Clearly (1, cp) is a CT system and then U is a T space (even a CT space).
This space has no STP basis because any nonconstant function of the space
has a sign change.

From Theorem 5.1 and Theorem 5.3 we deduce the following result.

COROLLARY 5.5. Each extended Tchebycheff space 0If on [a, b] has an
extension ft to any interval [a:, b] (2a - b < a: < a) which is an STP space.
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Proof Let (lIo, ... , lIll) be the basis defined in Theorem 5.1 by formulae
(5.1). In the proof of Theorem 5.1, we showed that this basis is bicanonical
and STP on (a, b). Now by (ii) = (iii) of Theorem (5.3) we obtain that the
extension

_. {(-I)i ll ;(2a-1)
lI i (l) :=

lI,( t)

if 1E [2a - b, a),

if 1E [a, b],

is CT on (2a-b,b). In particular (uo, ... ,ii ll ) is a T system on (2a~b,b)

and taking into account that the last column of

2a - b < to < ... < til 1< h,

is (0, ... ,0, I)T and that (uo,""u ll _ 1) is a T system on (2a-b,b), we
deduce that (uo, ... ,iill ) is a T system on (2a-b,b].

On the other hand, taking 2a - b < To < ... < Til < or: and following the
same steps of the proof (i) = (ii) of Theorem 5.3 we conclude that the space
generated by iio, ... , till is STP on [or:, b]. I
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